""" ja? S8 Bat % et ph a2 tea Lo ate ety S SaTy A0 AU AT B e A R R ¥ Rt
i

. N HGIBENOL B
, OTC_EILE_Cop. oy

CONTRACT No.: DAJA4S - 84 - C - 0043

AD-A186 173

"Study o Moden Instrumentation and Methods gon
Astnoncmic Positicning 4n the. Field"

SECOND TECHNICAL REPORT

| Accesion _Fo ST
NTIS CRA&! \]t B
DTIC 1Ab 0]
Unannou: wod 7]
Justiticarion

Stuttgart, March 1988

Edia s
L,
oy
K} e
W *a.
" v
. o
RETE R
R (

N
W 8 -
LN
o; ;-i

7,
l‘

Tl
R
I-‘f\l
L ELPLSD A

)

(:“I-

=8
“ @

Approved for public releasaj : o ) d‘, o

' DISTRIBUTION STATLMENT A
Distribution Unlimited

-




I Y O R R IO S 90 a0 e 007070 s (5.0 0N a0 .0 6.0 14" 0.0 Sa Sad tat ¢ XY a0y R AT T T O U U/ LS LN AW

i

Summary

-

- - o
-

The Finst Technical Report contained a detailed simulation study about the

Pl

possible accuracy of astaonomic positioning in the field. Namely we refer
to Chapter Three, especially to Figunes 2-29. :The simuiation study was

based on the assumption that the objects of field observations, the stars,

e

are perfectly known, including also the various astronomic reductions such

Y
as proper motion, aberration parailax etc. Here we, thorefere, allow:

$ some uncertainty of the star position: We present- a detailed analysis of
N how to proceed once only dispersive prion Aingormation about star positions
W . . ) . _y . . .
is available. The nonlinear condition equations are linearized by a two-
step Taylor series expansion accounting for stochastic information &, § of
b right ascension and declination, the parameters of star positions. A nu-
K v . . . . . d ;.
‘j merical analysis will be presented in the Finaf Report. - . - -~ *
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K 0. Introduction
8 I —
R
it Within the Finst Technical Repont (March 1987) we have characterized astro-
ﬁ; nomic positioning as the determination of the direction parameters of the
“' gravity vector, namely of astronomical Longitude A and astronomical Lati-
$ tude ¢, relative to an earth-fixed reference frame. According to the ob-
W
R servaticnal techniques ¢f stellar objects by means of a theodolite, an
N, additional quantity, the ondlentation unknown £ 4n the honizontal pLane
)
:ﬁ has to be determined. Within a GauB-Helment model of condition equations
K\
h: with unknowns we simulated various observational configurations in order
3 to get an accuracy estimate of the field operations by which astronomical
,‘5 longitude A, latitude ¢ and the orientation unknown I are determined.
N Namely we refer to Chapter Three of the F.inst Techinical Repont (March 1987),
f‘ especially to Figures 2-29. The accuracy of the observations had been as-
W sumed as follows: The r.m.s. value for the hondizontal dinection was sta- °
o ted as op = 1", for the ventical direction op = 1" and for time measure- 23’
o~
N ment oy = 0.1 sec. oy
: ..:.,
» .'-’
J 3 3 . . . rl’
¢ The simulation study was performed under the restriction that the respective ';'
- star positions are given pergectly. In reality, the star positions, namely Q‘T
vl Iy
L right ascension o and declination &, have to be characterized by a variance- §$
. o
:: covariance matrix. Its influence on astronomic positioning is analyzed here- s
¥ in. We derive observational equations in which the uncertainty of the star ':
< pasition is represented. Only through such a general model can the accuracy i;{
< of astrnonomic positicning {n the field be realisticallly estimated. ::
t
¥ oo
1’4 '
~J 's
=
- W
3 3
: *
i)




‘:’;.' JUpt’y X ~ ' -"'- DSt AL S AR AR rALL ML L T 0" AN AU P NS Sy M et At ian gt N it BaP e At Btk by bt g

1. Relations between the reference frames in geodetic astronomy

First of all in this chapter the fundamental relations in geodetic astronomy
between observations, unknowns and given coordinates shall be derived which
will be needed further.

1.1 The systematical structure of the reference frames

The reference frames used in geodetic astronomy may be arranged on different
levels which are numbered in turn or indicated by symbols: 0 corresponds to ',
1 to*, 2to-, 3 too. One fundamental vector v belongs to every level i.

In details this is as follows: i

V0 =V =1 the position vector from the point of observation to ,;fa‘
- - “ the target object (terrestrial or celestial), which is L
generally a star; NS,
-.".'-."-_ 0
P
yl = V=T the negative gravity vector; :'E:;
viav =0 the earth rotation vector (it has the direction of the ~
- - b axis of the earth, points to the North Pole and has the e
value of the earth rotation rate);
Vi= Ve =y the ecliptic normal vector (it points to the northern

~ pole of the ecliptic).

An orthonormal reference frame E belongs to every level with its base vectors

as follows:

Eé = norm Yi (1-1)
E2 = norm (V"1 x v (1-2)
£y = By xE (1-3)

Here "norm" denotes the abbreviation for the normalization of a vector, and "x"
the vector product.

New reference frames are at the Tower end the observational frame E' of the level
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"0", whose third base vector is located in the direction of the observation and
which is unique since it is not a reference frame in the literal sense, because
there are no vectors described with regard to this frame, and at the upper end
! the ecliptic frame §°, which has hardly any practical importance.

In addition to the systematical E-triads, F-triads also appear on each level.

These systems have the common third base vector with the appertaining E-frame,
nevertheless the direction of the first and second base vector does not follow
i+l

from the systematic structure of the fundamental vectors Vi, , but from a

~

more or less arbitrary definition.

A new E-triad is the theodolite frame 5*, whose first base vector El* lies in
1 the direction "zero" of the azimuth circle of a theodolite which is set up in
the astronomical horizon. The longitudinal angle (see below) of an observed
direction in the local horizon frame is the horizontal direction T and is re-
corded systematically 4n the clockwise direction, but conventionally counten-
clockwise, Ts = -Tc. The latitude angle (see below) is the vertical direction
as in the horizon frame E*.

The transformation from a frame gi to the appertaining frame Fi s always a
counter-clockwise rotation round the common third axis with the orientation

X angle HE,

' FLo= R (e (1-4)

\ = -3 ~

]

\ R, is the rotation matrix, which describes a rotation of a frame round the

third axis. It is

4

b CcoSY siny 0 1

)

1 Ry(y) = -siny cosy 0 J (1-5)
|
|

! L0 0 1

Corresponding to eqn. (1-5) the rotation matrices for the rotations round the
first and second axis read




R (a) = 0 cosa sina (1-6)

0 -sina cosa
r-cose 0 -sing
82(8) = 0 1 0 (1-7)
i sing 0 cosBJ

R
_1’
(see eqn. (1-4) ) are in detail:

R, and R, are also called elementary rotations. The orientation angles H

HY = H* = ¢ the orientation unknown of the theodolite which has
been set up;
H® = H =6 the Greenwich sidereal time;
Gr,s
H3 = WO the angle between the line of intersection of the eclip-
tic with the mean galaxy plane and the direction to the ,:;.
vernal equinox :90°, iﬂ:i
)
For the transformation from a frame E**! to the underlying frame E* one needs ;}f
the longitudinal angle Xi+1 and the latitude angle ¢i+1 of the fundamental "
vector V' with regard to the frame E'*}:
i o_ni i i+l _ i i i+l
E - 82(90 @i+1) B3(Xi+1) E B BE(Xi+1’®i+1’O)E
(1-8)
_ i i i+1
- BE(Xi+1’¢i+1)5
R. is the special case of a rotation matrix of Eulerian type, in which the three
elementary rotations are connected in a row as follows:
- first rotation round the third axis, 83(y1)
- second rotation round the new second axis with the angle (90°-B),82(90°-8) Eﬁ
A

z
W
-« third ratation rmw
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In the matrix R the second rotation round the second axis would take place "
v

with the angle 8,R,(8).

&% ® (.' s

These longitudinal and latitude angles are in detail:

X? = x, = A_ the azimuth of the observational direction;
@? = ¢, = B the vertical direction Af
X; = x¥ o= 8 the sidereal time o
4
Parl
1 Pt
0, = % = 9 the astronomical latitude. ;:j
N

N

¥

]
3

For the transformation from a frame £5*1 to the frame F! lying diagonally under-

e g )
&

>,

s

neath, one needs additionally the orientation angle Hi—(see Fig. 1):

“x

nti
i i i iypitl - )
E BE(Xi+1’¢i+1’H )E (1-9) ®

o

| . o

For the transformation from a frame Fl+1 to the frame E* lying diagonally under- 5&

neath, one needs the longitudinal angle fi+1 and the latitude angle ¢i+1 of the L

fundamental vector Vi with regard to the frame Ei+1

ot )pit (1-10)

=E' i+17 i+17~

The latitude angles are the same as above, the longitudinal angles are in de-

tail:

A? = A, = Ts the horizontal direction of the observation direction,
systematically measured counter-clockwise, conventionally
in the clockwise direction, TS = -TC;

A; = A* = A the astronomical longitude;

2 _ . _ ape

/\3 = /\o = 90

and

¢§ = ¢; = 90°-¢ the orthogonal complement to the inclination of the

ecliptic.
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Commutative diagram with reference frames in geodetic astronomy




For the transformation from a frame FX*! to the underlying frame Fi, one

needs additionally the orientation aﬁg]e HY:

i

I 3as]

_ i i 1ypeitl -
h BE(Ai+1’¢i+1’H )E (1-11)

The transformation in the opposite direction results from the respective trans-
posed of the rotation matrix.

1.2 The commutative diagram and the fundamental equation of geodetic astronomy

In the rotations introduced up to this point the right ascension a and the de-
clination & are still missing; these describe the observation direction §3.
to a star with regard to the space fixed equator frame, namely in the same way
as A and B do this with regard to the horizontal frame. Indeed, the rotation
BE(a,d)g' does not lead to the frame E'; in E"= BE(a,d)g' the second pase vec-
tor gz" lies in the equatorial plane, but in g' the vector Ez' 1ies in the hori-
zontal plane (east). Of course g' and g“ have the common third base vector,

but they differ by a rotation round this vector with an angle ¢ :

E' = Ry(E' . (1-12)

A serial connection of several transformations is called a diagram in the alge-
bra. If the transformations which have to be reversibly unequivocal, form a
closed circle, this is called a commutative diagram. Then one is able to express
a transformation by means of the others. Such a commutative diagram is presen-
ted in Fig. 1 by the lines which are thickly marked. For example the trans-
formation g* > E' can be expressed by

£ = Ry(T,B)R (1)E> (1-13)

or

E' = RI(E)R, (o, 6)R5 (0, )Ry

Gr’ e AyR)EX . (1-14)

As the representation of the triad E' with regard to the triad E* is unequi-
vocal, it follows that: -
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Re(T.B)R,(Z)=R3(£)R (o, 8)R3(0, IRE(A,0) (1-15)

This equation reads with the right-hand side written in full length

Re(TAB)RS(Z)=R,(~£)R,(90°-8)R ()R (-0, IR, (~N)R,($-90°) (1-16)
and can again be reduced to

R.(T+£,B)=R"(£,6-90°)R-(6_ +h-a,: (1-17)
-E o ‘_e Sy S Gr+ 'u,')

These are the desired fundamental #refat.ons between the parameters appearing
in geodetic astronomy.
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2. The observation equations of geodetic astronomy

The fundamental equation (1-17) consists as a matrix equation of nine sepa-

rate equations, of which only three are independent of each other because of
the property of orthonormality of the rotation matrices. These three inde-

pendent equations represent condition equations with unknowns for every star
(if T,B and 0, are measured at one instant).

The matrices on the left and right-hand side of equation (1-17) read as foi-
lows when they are multiplied respectively:

rcos(£+T)s1'nB sin(£+T)sinB -cosB
-sin(z+T) cos(z+T) 0
cos{s+T)cosB sin(z+T)cosB sinBJ
and
rCo]umn 1: ]

;‘n@cos(eGr+A—u)sinécosg-sin@sin(GGr+A-a)sin£+cos@cosécosg
l

sin@cos(eGr+A-a)sinésin§+sin¢sin(GGr+A—a)cos;+cosbcos@sing

sin¢cos(GGr+A-a)cos6-cos¢siné

Column 2:

—sin(GGr+A—u)sin6cosg-cos(OG”+A-a)sin§ :

-sin(OGI+A-a)sinosing+cos(Cbr+A-u)cosg ‘

-sin(eGr+A—a)cosd

Column 3:

cos¢cos(OGr+A-a)sindcosg-cos@sin(bGr+A-n)sing-sintcosfcos&

cos¢cos(eGr+A-a)sindsing+cos¢sin({br+ﬂ—a)cosi-sin¢cosésing

coswcos(ecr+A-a)cos§+sin®sin6
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In the right-hand matrix the elements in the third row are the shortest and at
the same time the only ones which do not contain the angle £. Therefore, it
is the obvious thing to do to select two equations from this row as indepen-
dent equations. As a third equation one could take an element from another
row of the matrices whereby the angle £ , in which one is not actually in-
terested, would indeed appear as an additional unknown. So one, therefore,
dispenses with such an equation and there remain only two independent equa-
tions for one complete observation (T,B and eGr) with the three unknowns A,
¢,2:

sinB = cos¢cos(eGr+A-a)cosé+sin¢siné (2-1)
sin(Z+T)cosB = -sin(g, +A-a)cosé (2-2)
cos(2+T)cosB = sinicos(g, +1-a)cosé-cososing (2-3)

Equations (2-1) and (2-2) are independent of each other, equation (2-3) is
dependent on them both. It will be used later only for the determination of
approximate values. The appearing variables be summarized once more:

)

A
A astronomical longitude i:gﬁ
¢ astronomical latitude ::f:
Qa right ascension of the star §;$.
& declination of the star V;;
h = OGr + A= hour angle 'ﬁﬁg
b orientation unknown of the instrument (theodolite) E::$
T horizontal direction; observed .

=>A =7+ T azimuth o

lrfl‘
-
i

2l .

B =90° - 2 vertical direction, angle between horizon and star; observed
9

L™

v

Greenwich apparent sidereal time; observed

L LS %Y 'u,'\'
}.‘-’?.’Jl{.

L4
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2.1 Linearization and matrix representation

S o

The equations (2-1) and (2-2) are linearized by Taylor series where we build

5%
-

e

in prnlon stochastic ingoaumation of the star positions o, §.

|Observations:| N
L)
The horizontal direction T, the vertical direction B and the coordinate clock :{n;-
\-l.
time t are observed. In order to derive linearized condition equations from :L:g
Gy
(2-1) and (2-2) horizontal and vertical directions are decomposed into ":
T=t+at, B=b+ab. (2-4) :::t:;
*:‘:i,':.}
The coordinate clock time t has to be related to the Greenwich apparent :jt*‘
LN
sidereal time angle 6. _, e.g. by the series °
Gr A
1 > N,
- : _ _ - A
|86l = 8 (%) * g (16)(x = g ¥ oplhx - 1)) ‘ (2-5) NS
| . Qyﬁix
| T =T, + eGr‘(To) [eGr‘(T) - eGr(ro)] . ‘ (2-6) ?\_:
éGr may be identified with the earth rotation speed Q. "i:&
A
o
s - - Y
Condition equations: §R§;
P .o
]Anéatz: | FLE{Y}, Xl‘ XZ] =0 (2-7) A
-.‘-"
‘\__-..,
The nonlinear vectorial condition equation F{E{Y}, Xl’ X2] contains the ob- :;{{
servation vector Y, (stochastic according to the theory of measurements), Ryt
the 4ixed unknown vector Xl’ but with dispersive stochastic prior Lngormaticit .2
NN
being available, and the fixed unknown vector with any stochastic prior in- :;:j‘
formation. Siia
| 1st Taylor series ] ;ib
At a {ixed point y, X1+ %o of approximation we are linearizing the system R%Q’
N
of nonlinear condition equations (2-7). 5}%:
S
LS
= ' - -
FLE(Y}, Xy, X501 = Fly,x,x5) + FHy,xg,x5) [E{Y} - y] (2-8) o
' ) - "“'
+ F)( (y,Xl,XZ)(Xl xl) + FX (y,xl,xz)(XZ XZ) + 02 ..'\:::'
1 2 o
o

0, indicates the neglected terms of higher order. N ",
4,
|
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2nd Taylor seriesJ

At a astechastic point }, Xy of approximation we are linearizing the system

of nonlinear condition equations (2-7).

FIY,Xp0%,) = Fly,xp,%,) F;(y,xl,xz)(i-y) + (2-9)
+ F;(l(,yvxlvxz)(;(l~x) + 62

(2- J —>

(2-

% FLEQYE.K) Xp) = (VX axp) = FL(y,x ) TE(YY = V] (2-10)

i
f
l

"R (e = R (XX U mig)

Now we have been led to a system of fineanized conditicn equations where

Y -~y =: ay and X1 - il =: A&l are stochastic comnection vectons while

X2 T Xy TDAX, contains the fixed or nen-stechastic conrection vecton. The
next step is to write down the observational equation for y and the pseudo-

obsenvational equation for x., the vector of stochastic information.

1 ?
- - e T T T T T T T 3
2 !
E{Y} . D{¥Y} = Q" , rkQ=n |
Einy =X, - b D{x.} = V.o% , rkV, m et
L 1 Xy 1! 1° > 1= M g
_ S |

Here the pseudc-cbservational equaticn is generated by prior informative data
of the atan positions, parameterized by {a,8}, namely by

—~ P - - -

&‘ a \ba g&‘ 5
Eq| )= SRS B N R R (2-12)
| § b, 5
. L {_ - =
X = (6,877 . (2-13)
sinB = sin(b+ab) = sinb + &b cosb
cosd = cos(¢0+6¢) = cos¢O - &0 sin¢o

cos(eGr+A—a) = COS(OeGr+Ao-a+6eGr+6A-6a) = (2-10)
= cos(oeer+Ao-a) - (deGr+5A-6a)51n(oeGr+Ao-a)

cosé = cos(8+88) = cosd - 86 sing

i + = s +
s1n(¢0 5¢) s1n<1>0 8§ cos¢o

sin¢

—— e ——————————
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(2-1), (2-2), (2-14) __>
. sinb + cosb ab 2 cos¢ocos(OSGP+Ao-&)cosS + sine sind - (2-15)
i - cose, s1n(09Gr+Ao-a)(éeer+6A)
} + [-s1n¢o COS(OBGP+AO-Q) + coso singd] 6¢

+ i -a +
cose sin( eGr+Ao a) éa

0
l + sin@o(cosé) 88 ;

sin(zo+E) cosb + cos(zo+f) cosb(ss+at) - (2-16)

-sin(zo+E) sinb ab =

\-S1n(oeGr+Ao-a) coss - COS(OeGr+Ao-a) cosd(deGr+6A)

l - ) . oAl A
\+cos(08Gr+Ao-a)6a + S1n(oeGr+Ao'a)(S1né) &8

In extension of the linearized condition equations (2-4), (2-5), respectively
being introduced in the Finst Technical Repont, page 13, here we are led to
the additional terms proportional Sa, &8, respectively. They account for the
uncentainties cf the starn positions. Once we assume zero F(Y’Xl’XZ) -
F(y,il,xz) = 0, a result which can be achieved by a proper gauging of the
approximate values, we finally introduce the linearized equations

-cosb Ab - cos@0 s1n(oeer+Ao~a)(éeGr+éA) +
+ [-s1n¢0 Cos(oeGr+Ao-“) + cos¢oswn5] §¢ + (2-17)
+ C°S¢051n(oeGr+Ao_a)6a + s1n¢o(cosé) 88 = 0
-cos(I +t) cosb(sz+at) + sin(zo+f) sinb ab -
-cos(oeGr+Ao-a) cosé(éeGr+6A) + (2-18)

-~

_= -~ + . -~ s ° =
+c°s(oeGr+Ao a) &8 S1n(08GP+AO a)(sing) & 0

From these equations we obtain the proper condition equations with respect to
the estimation / prediction problem when we introduce the vectons o4 Lncon-
sistency, ey and e respectively.

1 -
Y = E{Y)} + ey Xy = E{xl} + ex1 AJ (2-19)
FyAy + Fxlel + szsz - Fyey =0 (2-20)
Filay + F!' b+ F' ax, -~ F' e - Fle =0 (2-21)
y x1 xl x2 2 x1 x1 yy B
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I
{ Aby + Abx, + Bay = Aje, + Bey (2-22)

Al’ A2 and B are the coefficient matrices for all observations taken to various
stars. The structure of the coefficient matrices can be read from the two
equations (2~17) and (2-18). Note that not only A, ¢, T or 8A, §&, 8 are
unknowns, but as well a, § or 8&, S%, the corrections to star positions.

Their uncertainty will play an essential part in the final computation of the

variance-covariance matrix of A, ¢, !

In order to solve the linearized mixed model condition equations (2-22) we
apply the generalized method o4 Least-squares

L{e ,exl,sz,A} =
{- 0 | CA, ) e
=3 Tey.e) IR AR A
25 e v 1 ;
_ 1] L m Xy
T -
+ A (Alb1 + A2Ax2 + Bay - AleXl - Bey =
(2-23)
- T 1 -
1T T, | YRR A e,
=5 [ey,ex ] T +
1 Al , 1 +Vl e
1
T _ .
+ A (Albl + AZAx2 + Bay Alex Bey) = min
1 (e ,e. ,AX,,A)
Y’ UXy 2

The normal eguations and their solution will be given in the F.inal Repont.
There an extension of the results, Finst Technical Repont, pages 20-29,
will be presented.
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